If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+122t+10=0
a = -16; b = 122; c = +10;
Δ = b2-4ac
Δ = 1222-4·(-16)·10
Δ = 15524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15524}=\sqrt{4*3881}=\sqrt{4}*\sqrt{3881}=2\sqrt{3881}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(122)-2\sqrt{3881}}{2*-16}=\frac{-122-2\sqrt{3881}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(122)+2\sqrt{3881}}{2*-16}=\frac{-122+2\sqrt{3881}}{-32} $
| 0=-16t^2+122t+10 | | y-42=7 | | X^2+2x-10=9 | | h+1=8 | | (3x+10)=(2x-10) | | 6.4n+2.3=47.1 | | 9y+3=36y= | | 25-8y=14 | | x/90=11/20 | | 2+3x=3x-2 | | x/18=11/100 | | 1/4c+9=13 | | 2x+62=82x-6 | | 3=12m=8-2m-24 | | 12^7x=17^x+6 | | 4-2x=3(3-x) | | 2x+31=7 | | 6s-27=69 | | 4(6x+5)=2x+1 | | 2x+19=54 | | 12m-5m+5m-9m=9 | | 6x+1=-6(1-×) | | 2m+4m-4m-m=18 | | 5x+4(7x-10)=158 | | 7*7x=168 | | 7n-2n-n=12 | | 210=3x+3(5x+10) | | H=-2.5t^2+200t | | -9n+8n+1=2n+1 | | 2(3x^2+14x-192)=0 | | P+3p-4p+3p+p=20 | | 47=-1-8b |